776net必赢官网
ENGLISH
|
bwin必赢主页
主页
bwin必赢概况
bwin必赢简介
现任领导
组织机构
联系方式
师资队伍
教授
副教授
讲师
党委行政
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
本科教学
教学动态
精品课程
教学团队
本科生实习
专业介绍与培养方案
研究生培养
研究生培养动态
研究生专业方向
研究生培养方案
党建园地
党建动态
数院党校
学生工作
学工热点
研究生园地
班团快讯
体坛风云
社团采风
学工制度
合作交流
校友动态
校友动态
人才招聘
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
学术报告
当前位置:
主页
>
科学研究
>
学术报告
> 正文
计算数学视角下的机器学习算法
发布时间:2024-12-27 作者: 浏览次数:
Speaker:
谢和虎
DateTime:
2024年12月31日(周二)上午10:00-12:00
Brief Introduction to Speaker:
谢和虎 中科院数学与系统科学研究院 计算数学研究所
Place:
Abstract:
本报告从有限元方法中的子空间逼近角度来分析机器学习算法的误差,得到计算损失函数的积分误差是制约机器学习算法精度的主要原因之一。基于此理解,为了提高求解的精度,我们将介绍一种基于子空间迭代的机器学习算法,并用于高精度求解偏微分方程,充分体现神经网络的强表达能力。另外,为了求解高维偏微分方程,我们也将介绍张量神经网络及其相应性质,然后介绍基于张量神经神经网络的机器学习方法及其在求解高维偏微分方程中的应用。这里将介绍基于有限维逼近的后验误差估计思想来设计求解高维偏微分方程的损失函数,以得到机器学习求解的高精度。
上一条:
Combinatorial codes related to digital copyright protection
下一条:
When is Fractal uncertainty principle of discrete Cantor sets most uncertain?II