科学研究
学术报告
当前位置: 主页 > 科学研究 > 学术报告 > 正文

Stability of Periodic Waves Bifurcating from a Front-Back Wave Loop, II

发布时间:2025-04-25 作者: 浏览次数:
Speaker: 于晴 DateTime: 2025年4月25日(周五)下午 16:00-17:00
Brief Introduction to Speaker:

于晴,研究员,华中科技大学


Place: 国交2号楼201
Abstract:In this talk, we focus on the stability of periodic waves bifurcating from a front-back wave loop. First, in general systems, we give the expressions of spectra with small modulus for linearized operator $L$ about these periodic waves by using Lyapunov-Schmidt reduction method and Lin-Sandstede method. Then, applying above spectral results to FitzHugh-Nagumo system, we obtain that $L^2(\mathbb{R})$-spectrum of $L$, consisting of essential spectrum, lies in the left-hand complex plane and is tangent to the imaginary axis at the origin. Last, we analyse the nonlinear stability of periodic waves against localized perturbations for FitzHugh-Nagumo system.